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Short Papers

Computation of Propagation Constants for the Fundamental

and Higher Order Modes in Microstrip

ANDREW FARRAR, SENIOR MEMBER, ISEE, AND

ARLON T. ADAMS, SENIOR MEMBER, IEEE

,-tbstract-A method used to treat static problems in microstrip is

extended to treat time-harmonic problems of covered and uncovered

microstrip. Both longitudinal and transverse currents are taken into

account, Impedance functions (integrals of Green’s fnnctions) for covered
and uncovered microstrip are derived in terms of improper integrals
(limits O + co). Accurate evaluation of these integrals is carried out.

Matrix methods are then used to obtain propagation constants for the
fundamental and higher order modes. Data obtained agree closely with
experiment.

I. INTRODUCTION

For mierostrip of commonly used dimensions, an electrostatic
analysis is reasonably adequate at frequencies below S band. At
frequencies above S band, especially for wide (W/H z 0.5)
center conductors, microstrip is dispersive and departs signif-

icantly from the behavior predicted by static analysis. A number

of attempts have been made recently to obtain time-harmonic

solutions for microstrip. The majority of the authors have

advanced solutions for the dominant mode of shielded microstrip

[1 ]-[11 ]. Several authors have used the method of finite dif-

ferences to analyze the higher order modes in shielded mic,-ostrip

[8], [9]. The problem of open microstrip has been treated by

several authors who have assumed particular current distribu-

tions [12 ], [13]. Getsinger [14] has used a ridge-guide approx-

imation to microstrip and has obtained theoretical as well as

experimental data.

In this short paper, the propagation constants for the dominant

and the higher modes of open microstrip are computed. Both

longitudinal and transverse currents are treated. The method of

solution used is an extension of the Fourier integral method used

previously by the authors to treat static problems of covered and

multilayer microstrip [15], [16]. The Fourier integral (k-space)

method is used in conjunction with the method of moments [17].

Pulse expansion functions are used for both longitudinal and

transverse currents. A multiple-impulse weighting function is

used, in a “quasi-Galerkin” solution. Propagation e–-jk”z is as-

sumed and a characteristic (eigenvalue) equation is obtained for

the propagation constants of the microstrip modes. The cor-

responding solution for covered microstrip is also given. Solu-

tions to the characteristic equation are obtained using a computer

program and the results are compared with available data.

II. THE GENERAL FORMULATION FOR THE CHARACTERISTIC

EQUATION

Fig. 1 shows the basic geometry considered for open (un-

covered) microstrip. It is assumed that all quantities vary as

e- ‘kzz. The allowed values of k= are sought.
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SUBSECTIONS OF THE CENTER CONDUCTOR

\

GROUND PLANE

Fig. 1. Cross section of open (uncovered) microstrip.

The center conductor consists of n subsections each of width

Ax. A typical subsection xi (i = 1,3,2,... ,n) is traversed by both

longitudinal (J?zi) and transverse (~xi) current. The current

densities on the center conductor may be written as

J= = ~ JXi fzie-jkzz (1)
t=l

(2)

where Jxi and Jzi are unknown complex constants and where

Jzi and fx~ are expansion functions” [16]. An example is the pulse

expansion function defined below

(fxi=.Li= J on Axi

, on all other Axi. (3)

The tangential components of electric-field intensities on sub-

section i due the currents on subsection j are

exi = ~ J.xj ~ .Li(X’)Gx.(p [ P’) dx’j=t Axj

+ Jzj
J

Lj(x’)Gxz(p I P’) d:.’ (4)
Axj

and

ezi = ~ Jzj
f

fzi(X’)Gzx(~ / P’) ~X’
j=l Ax,

+ Jxj
J

fxj(X’)Gzz(~ ! P’) ~X’ (5)

Axj

where GXz(p I p’) is, for instance, the tangential component of

electric field at p due to a current J,j at source point p’. Define

a set of weighting functions ~i(~) [17]. Multiply both sides of

(4) and (5) by Wi and then integrate over the center conductor.

Consequently, the right-hand sides of (4) and (5) yield EXi and

-Ezi, respectively, which are weighted averages of the electric

field over the length Axj. And the left-hand sides of (4) and (5)

represent ZXX(ii), ZXz(ij), etc. [18]. The quantities ZXX(iJ), ZXz(ij),

etc., are “generalized” impedance functions for the problem.

The relationship between the tangential components of the elec-

tric field and the currents for the n subsections may thus be
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Fig. 2. Impedance-function geometry for uncovered microstrip (2a << w).

written in matrix form where j“ (kx,kY) is determined by applying the boundary con-

ditions of the problem. The parameters kx, k,, and k= in (12)

El=mu] (6) are separation constants which satisfy

kx2 -t ky2 + k=z = k2. (lo)

where bold face denotes a matrix. The representation in (6)
To formulate the problem in terms of fields TM and TE to y, let

is of the familiar method-of-moments [17] form. Since the
tangential components of the electric fields at the surface of the A = ij”~ (11)
conductor vanish, (6) becomes

F = @$ (12)
[Z(kz)] [J] = O (7)

where A and F are magnetic and electric vector potentials as
where [z] is a square matrix of order 2n (the generalized imped- defined by Harrh@on [19] and the superscripts M and ~
ante matrix) and [~] is a column matrix of the unknown denote modes TM and TE to y, respectively. The electromagnetic
currents. The characteristic equation is found by setting the field (in a source-fr~ region) in terms of @M and @E is given by

determinant of [z] equal to zero
~_la*M a*M

det [Z(kJ] = O. (8) x-~~y+a+
+ ~ a2@

Hx=-—— —
az 2 axay

The proper values of K, (normalized) for which (8) is satisfied
~ = 1 a2tiM ai’

are sought, The eigenvectors J., J= may be obtained by solving z — - —
7 az ay ax

Hz – a~M ; 1 a2$E. —— (13)
(7) for a particular K.. ax z? ax ay

“The p;eceding an;lysis applies to the covered rnicrostrip of
Fig. 5 as well as the uncovered microstrip of Fig. 1, except that
the Green’s functions differ. The formulation can also be applied

to multiple-conductor problems.
In the following analysis pulse expansion functions and

multiple-impulse weighting functions are used, in a “quasi-
Galerkin” solution.

III. ANALYSIS

A. Impedance Functions for Uncovered Microstrip

In this section, the fields due to a subsection carrying longi-
tudinal (Jzj) and transverse (Jxj) currents are determined. Fig. 2
shows a typical current-carrying subsection j. It is assumed that
the currents are uniform over the subsection (pulse-expansion
functions). The tangential components of the electric and
magnetic fields in the plane of the interface are required. The
problem is formulated in terms of fields TE to y and TM to y.
This combination constitutes a complete set describing all
possible modes for the geometry of Fig. 1. The solution starts
with the proper selection of wave functions.

ti= H f (kx,ky)ejkxxejk’ye ‘jkzz &x dky (9)
kx k=

where ~ = jrm and Z = jcop.

For convenience, wave functions vM and *E satisfying the

boundary conditions on tangential E at the ground plane (Y = O)
are selected

J
co

*,
M = e-jkzz

–m

J
m

#2M = ~-jk.z

-co

A(kx)ejk’’fY-Hle~kxx dkx (14)

cos kw Y ~jkxx &
B(L) . x (15)

sm kyzn

C(kx)e~kylty-~Jej~x- dkx (16)

D(Q
sin %zy ~jkxx &

x. (17)
sin ky2H

The integration variable kx (rather than ky) is dictated by pulse
representation used for the current. Subscripts 1 and 2 in (14)-(17)
refer to regions “I and II of Fig. 2 and the superscripts M and E

refer to the wave functions for TM and TE, respectively. Quan-
tities kx and k= are identical for both regions in order to satisfy

boundary conditions at the interface (y = H).

Functions A, B, C, and D are determined by applying the
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following boundary conditions at the interface:

Exl = EX2 HX2 – Hxl = Jzj

Ezl = EZ2 Hzl – Hzz = JXj

where Jzj and JXj are the current densities [18]. Substitute func-
tions A, B, C, and D into the wave functions in (14)–(17). The
tangential components of electric fields may be obtained by
substituting these wave functions into (13). The tangential
components of the fields at y = H are

EX =
J

* [f(k.)h + d~x)zxjl dkx (18)
o

J

m
E, = [@.)Lj + jlW.j] dk. (19)

o

where

~(k ~ = _ 2e-~kzZ kz(kyz + jTkyJ sin k.a sin kX(x – Xo)
x

Z F1 (k,, + jerTkyJ(kyl + jTkyJ

2je-~k”z ky2(k12 – kX2) + jTky1(k22 – kX2)
g(kX) = —

nf~ kx(kyz + je,TkyJ(kyl + jTkY2)

. sin kxa cos kx(x – XO)

2je-jkZz ky,(kl’ - kz2) + jTky1(k22 – k=’)
q(kX) = —

7CY1 k~(kyz + j&, TkyJ(kyl + jTkyJ

. sin k~a cos IcX(x — Xo) (20)

where T = cot kp2H. The range of integration is reduced to
(O + m) by using only the even parts of the integrands.

The improper integrals in (18) and (19) are evaluated by
breaking into two integrals with ranges (O + u) and (u +- co).
The first is evaluated by numerical integration using Simpson’s
rule. No poles in this region are encountered. The second is
evaluated in closed form by 1) using large argument expressions
of the integrand, 2) expanding in a Taylor series, and 3) integrat-
ing term by term. The details of this procedure are as follows.

Equations (18) and (19) may be written as

EX =

J
u (fIzj + oZXj) dkX +

J
m (J~zj + ~Z.j) dkx (21)

o u

E= =

J
“ (qZzj + ~IXj) dkX +

J
m (qIZj + fIXj) dkX. (22)

o u

The variable u in (21) and (22) is selected such that

T = cot ky2H = j for IXY2H I > 10, (23)

The integrands of the second integrals in (21) and (22) are ex-
panded in a Taylor series in kX after substituting (23) into (20).

An expansion in kyl or ky2 cotdd also be used but is less con-

venient for this problem.

Next, write (21) and (22) as follows:

(large argument part of 17X)

J
u

E= = (fIZj + gIXj) dk. + E=’
o

(lqrge argument part of E=)

where

J ([

m
E=’ = A

1 KZ2

u 1(E + F)KX – (F + S,E)KX

x Izj(sin Q Kx + sin Q’ KX)

+ jKz(cos Q’ KX – cos Q KX)

)
ZXj dKX

F + &,E

EX’ = A
H

m jKz(cos Q’ KX – cos Q Kx) *

F + trE
ZJ

u

[

1 Kx

+ (E+F)KX- 1

IXj
F + e,E

}
x (sin QKX + sin Q’ KX) dKx

where

A = e-jkzzjn~l, Q = (x – xo)ko + ako

E = dKX2 + KZ2 – 1, Q’ = (X – xo)ko – ako

F = JKX2 + K=’ – e,, KX = kX/ko, K= = kz/ko.

E, F should not be confused with vectors E, F.

Rewrite (24) and (25) as follows:

(24)’

(25)

EZ’ = (I – KZ211)1ZJ+ jKzIVZXJ

EX’ = jKzIVZzj + (II – III)ZXJ (26)

where

I=

J

m sin Q KX + sin Q’ KX dK

u (E + F)KX x

II =
J

~ sin QKX + sin Q’KX dK

u (F + e,E)KX x

(27)

(28)

III =
J

m KX(sin Q KX + sin Q’ Kx) dK

F + erE
x (29)

u

IV =
J

W COSQ’KX – COS QKX dK

F + qE
x. (30)

Ii

To carry out the integration in (27)-(30) the expansions for the

expressions 1/(ii + F) and 1/(F + &E) are needed, For brevity,
only the integral in (27) will be considered here. The evaluation
of the integrals in (28)–(30) may be carried out in a similar
manner. Expand the expression 1/(J? + F) in powers of K.

1— . AS c.+.
E+F 8,– 1..1 ~

(31)

Substituting (31) into (27) we obtain

Using the appropriate integration formula [20] we obtain the
final result for I as follows [18]:

“(Cos xl Cos X2
—+—

2k+2
xl

2k+2
x’ )
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n–1

+ & (– l)k+1(2k !) ‘- + s?%
X;k+l x;k+l

+ Ci(xl) + Ci(xz)

1
y (Q~’-l + Qf2n-1,

xl

where

ci = the cosine integral

xl = UQ

X2 = uQ’.

Finally,

J~z(fj) = u(d.j + fLj) dKy
o

+ (I – KzII)lzj + jKZIXjIV. (34)

Equations (33) and (34) are thus the final expressions for the
tangential electric fields at field point xi on the interface (Fig. 2)
due to a current-carrying subsection centered at source point Xj.

B. Impedance Functions for Covered Microstrip

The impedance function for covered microstrip ,may be derived

by a procedure similar to that described in the previous sub-

section, except that it is necessary to choose $ functions which

satisfy the boundary conditions on tangential electric field at the

top cover (y = ~) (see Fig. 3). The results areas follows:

JEx(ij) = mr (kX)Zzj + s(kx)I.~ dkx (35)
o

JEz(ij) = mt(&)LJ + r (k.)~xj dky (36)
o

where

r(kX) = 2je-~kzz kz(kY2 T1 + kY1 T2) sin kXa sin k,(x – XO)

7cj1 (kyzT, + &,k,l Tz)(k,l Tl + k,zTz)

s(kX) = c “’T’(k” - ‘~) + ‘y1T2(k22 - ‘<)
7rj ~ kx(kYz TI + e,k,l T2)(’Y1 T1 + ‘Y2T2)

. sin kXa cos kY(x –

2e-jkzz kY2Tl(k12 – k=’) + k,l T2(k22 - kzz)
t (kx) = —

rcjl kx(kY2 TI + :,k,l T’)(kyl T1 + kmTz)

. sin kXa cos kx(x –

XJ

Xo)

and where T1 = cot kYl(E - H) and T2 = cot kY2H. Note that

if the top cover is removed (let E + CO), (34) and (35) will be
reduced to (18) and (19). Equations (34) and (35) maybe evaluated
in a manner similar to that previously described for (18) and (19).

IV. COMPUTATTONALPROCEDUREFOR PROPAGATIONCONSTANTS

Once the impedance functions are obtained, substitution in (8)
yields the desired eigenvalue equation. The procedure for the
solution of this equation is as follows.

For a particular choice of n, the number of subsections (see
Fig. 1) there area finite number of K= for which the determinant

is zero. These roots are found by plotting the determinant versus

/
z \

GROUNDU.ANE

I?ig. 3. Impedance-function geometry for covered rnicrostrip.

1- 1 I H= 025
,6. =105I

-.w H = 050
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● ExPERN4ENTAL(GE7SIN=R

FRSOUENCYIN GHz

Fig. 4. Effective dielectric constant for fundamental mo~ie in micro$trip.

KZ. There are extraneous roots which are improper values of K,

[16].

The extraneous roots are found by varying both frequency and

the number of subsections. The proper roots are not significantly

affected, whereas the extraneous roots are changed radically. This

combined criterion is found to be very effective in detecting

extraneous roots.

A computer program in Fortran IV was prepared to calculate

the eigenvalues of K= for the fundamental and higher order

modes in microstrip, The results for the dominant mode are

plotted in Fig. 4 (the ordinate is e. where Ce = (kz/ko)2). Note

the good agreement with experimental data. ‘l<he maximum

deviation is 4 percent in e., which corresponds to 2 percent in K=.

Note also that the static (dispersionless) solution would be

represented by a horizontal line. Fig, 5 shows some results for

dominant and higher order modes as compared with theoretical

results by Van de Capelle and Lypaert [12] and Getsinger [14].
The maximum deviation is 4 percent in e, or 2 percent in K=.

The computation time for any one of the curves in Fig. 5 was
approximately 20 min using the Honeywell 635. This includes
the time necessary for generating extra data in order to select the
correct values of Kz.
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Fig. 5. Normalized propagation constant for fundamental and higher
order modes in open microstrip (. Van de Capelle and Lypaert [12],
❑ Getsinger [14]).

V. CONCLUSIONS

A continuous-spectrum method has been used in conjunction

with the method of moments to treat the time-harmonic solution

of covered and uncovered microstrips. Both longitudinal and

transverse currents were considered in the analysis. The propaga-

tion constants for fundamental and higher order modes in open

microstrip were calculated. In each case the results are in good

agreement with available theoretical and experimental data: The

results are accurate to within 4 percent.
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General Noise Analysis for Bias- and RF-Voltage-Dependent

Transferred-Electron Devices

J. T. PATTERSON, MEMBER, IEEE

Abstract—The general AM and FM noise spectrum analysis of Sweet

for transferred-electron devices is extended to include the variation of
device admittance with both bias- and RF-voltage amplitudes. This is

important because recent investigations by the author suggest that there

are significant variations of device admittance with both parameters.
Also the expressions for tbe AM and FM noise spectra are formulated
in terms of the more basic quantities such as stored charge, modulation
sensitivities, and incremental admittance.

INTRODUCTION

The lumped-circuit analysis of noise in self-excited oscillators

has received considerable attention. Edson [1], Mullen [2], and

van der Pol [3] wrote basic papers on this subject. As different

self-oscillating devices have been developed, their noise proper-

ties have been studied in detail. Lax [4] underscored this in-

dividuality of self-excited oscillators when he observed that “the ‘

noise mixes with the signal in a complex fashion that is quite

different from ordinary nonlinear systems . . . . It is not satis-

factory to represent the spectrum as a delta function signal PIUS

a background. The noise will spread the delta function spectrum

into a finite width. ” This complex mixing is dependent both on

the device properties and on the device environment. Hence,

it is necessary to combine an oscillator device model with an

RF-circuit model to completely study oscillator noise properties.

This short paper extends the theoretical groundwork for the

general noise analysis of transferred-electron (TE) devices.
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