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Abstract—A method used to treat static problems in microstrip is
extended to treat time-harmonic problems of covered and uncovered
microstrip. Both longitudinal and transverse currents are taken into
account. Impedance functions (integrals of Green’s functions) for covered
and uncovered microstrip are derived in terms of improper integrals
(limits 0 — c0). Accurate evaluation of these integrals is carried out.
Matrix methods are then used to obtain propagation constants for the
fundamental and higher order modes. Data obtained agree closely with
experiment.

I. INTRODUCTION

For microstrip of commonly used dimensions, an electrostatic
analysis is reasonably adequate at frequencies below S band. At
frequencies above S band, especially for wide (W/H = 0.5)
center conductors, microstrip is dispersive and departs signif-
icantly from the behavior predicted by static analysis. A number
of attempts have been made recently to obtain time-harmonic
solutions for microstrip. The majority of the authors have
advanced solutions for the dominant mode of shielded microstrip
[1]-[11]. Several authors have used the method of finite dif-
ferences to analyze the higher order modes in shielded microstrip
[8], [9]- The problem of open microstrip has been treated by
several authors who have assumed particular current distribu-
tions [12], [13]. Getsinger [14] has used a ridge-guide approx-
imation to microstrip and has obtained theoretical as well as
experimental data.

In this short paper, the propagation constants for the dominant
and the higher modes of open microstrip are computed. Both
longitudinal and transverse currents are treated. The method of
solution used is an extension of the Fourier integral method used
previously by the authors to treat static problems of covered and
multilayer microstrip [15], [16]. The Fourier integral (k-space)
method is used in conjunction with the method of moments [17].
Pulse expansion functions are used for both longitudinal and
transverse currents. A multiple-impulse weighting function is
used, in a “quasi-Galerkin solution. Propagation e~7*+* is as-
sumed and a characteristic (eigenvalue) equation is obtained for
the propagation constants of the microstrip modes. The cor-
responding solution for covered microstrip is also given. Solu-
tions to the characteristic equation are obtained using a computer
program and the results are compared with available data.

I1. THE GENERAL FORMULATION FOR THE CHARACTERISTIC
EqQuaTION

Fig. 1 shows the basic geometry considered for open (un-
covered) microstrip. It is assumed that all quantities vary as
e~ %%, The allowed values of k, are sought.
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Fig. 1. Cross section of open (uncovered) microstrip.

The center conductor consists of # subsections each of width
Ax. A typical subsection x; (i = 1,3,2,---,n) is traversed by both
longitudinal (J,;) and transverse (J,;) current. The current
densities on the center conductor may be written as

Ix

I

n
X, Tt €y

n
L= X Jalue @
i=
where J,; and J,; are unknown complex constants and where
J,; and f,; are expansion functions [16]. An example is the pulse
expansion function defined below

1, » on Axi

S = fui = {O, on all other Ax;. Q)

The tangential components of electric-field intensities on sub-
section { due the currents on subsection j are :

e = Y Jou | fulx)Guxlp | p') dx
i=1 Ax;

+ T S, (XNG(p | p) dx

Ax;

4

T f Fi)Gonlp | 9') dx’
Axy

+ ij f ij(x,)Gzz(p ! P’) dx’ 5
Axj

where G,,(p|p’) is, for instance, the tangential component of
electric field at p due to a current J; at source point p’. Define
a set of weighting functions w;(x) [17]. Multiply both sides of
(4) and (5) by w; and then integrate over the center conductor.
Consequently, the right-hand sides of (4) and (5) yield E,; and
E,;, respectively, which are weighted averages of the electric
field over the length Ax;. And the left-hand sides of (4) and (5)
represent Z,, P, Z.,%9 etc. [18]. The quantities Z,, ", Z,,\,
etc., are “generalized” impedance functions for the problem.
The relationship between the tangential components of the elec-
tric field and the currents for the n subsections may thus be
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written in matrix form

[Ex] _ [sz Zxx] [J] ©
EZ ZZZ sz Jx

where bold face denotes a matrix. The representation in (6)
is of the familiar method-of-moments [17] form. Since the

tangential components of the electric fields at the surface of the
conductor vanish, (6) becomes

[Zt)]lI] =0 ™

where [Z] is a square matrix of order 2n (the generalized imped-
ance matrix) and [J] is a column matrix of the unknown
currents. The characteristic equation is found by setting the
determinant of [Z] equal to zero

det [Z(k,)] = 0. ®)

The proper values of K, (normalized) for which (8) is satisfied
are sought. The eigenvectors J,, J, may be obtained by solving
(7) for a particular X,. )

The preceding analysis applies to the covered microstrip of
Fig. 5 as well as the uncovered microstrip of Fig. 1, except that
the Green’s functions differ. The formulation can also be applied
to multiple-conductor problems.

In the following analysis pulse expansion functions and
multiple-impulse weighting functions are used, in a “quasi-
Galerkin” solution.

III. ANALYSIS
A. Impedance Functions for Uncovered Microstrip

In this section, the fields due to a subsection carrying longi-
tudinal (J;;) and transverse (J,;) currents are determined. Fig. 2
shows a typical current-carrying subsection j. It is assumed that
the currents are uniform over the subsection (pulse-expansion
functions). The tangential components of the electric and
magnetic fields in the plane of the interface are required. The
problem is formulated in terms of fields TE to y and TM to y.
This combination constitutes a complete set describing all
possible modes for the geometry of Fig. 1. The solution starts
with the proper selection of wave functions.

¥ = f f Flky ke *s%eibe=dkaz gk di, )
ke Jky

Impedance-function geometry for uncovered microstrip 2a < W).

where f(k,,k,) is determined by applying the boundary con-
ditions of the problem. The parameters %, k,, and &, in (12)
are separation constants which satisfy

k2 + k2 + k2= k2 10)

To formulate the problem in terms of ficlds TM and TE to s let
A=y 11)

F=yFp (12)

where A and F are magnetic and electric vector potentials as
defined by Harrington [19] and the superscripis M and E
denote modes TM and TE to y, respectively. The electromagnetic
field (in a source-free region) in terms of Y™ and yF is given by

M E M 2 1E
Bl M 1 ay
Y ox dy oz 0z Z ox dy

2. .M E M 2,1,E

Y ozdy @ ox ox Z dz 8y

where ¥ = joe and Z = jou.

For convenience, wave functions ¥ and 7 satisfying the
boundary conditions on tangential E at the ground plane (¥ = 0)
are selected

o

M = f AP0~ e (14)
-0
fs.)

UM = o~k f Bk,) c_?s_kl’%y e gl (15)
o sin &y,
o0

U = e_jk‘,J‘ C ke —Mghsx i (16)
-~
w .

Ut = eIkt D(k,) sin ky2p i dk,. (A7)

) — sin kyz

The integration variable k, (rather than k,) is dictated by pulse
representation used for the current. Subscripts 1 and 2 in (14)-(17)
refer to regions T and II of Fig. 2 and the superscripts M and E
refer to the wave functions for TM and TE, respectively. Quan-
tities k, and k, are identical for both regions in order to satisfy
boundary conditions at the interface (y = H).

Functions 4, B, C, and D are determined by applying the
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following boundary conditions at the interface:

Exl = Ex2 sz - Hxl = sz

E,=E, H,y, — H,; = ij

where J,; and J,; are the current densities [18]. Substitute func-
tions 4, B, C, and D into the wave functions in (14)-(17). The
tangential components of electric fields may be obtained by
substituting these wave functions into (13). The tangential
components of the fields at y = H are .

0
- f Lf Ly + gkl de 18)
. ‘
0
- f [qL, + F(k)Iey] dis (19)
o]
where
Fl) = — 2e % | (k,, + jTky) sin kea sin ky(x — xo)
¥ o (kyy + JeThy)(kyy + jTk,y)
olk,) = 2je~ %2 kyz(k1 —k 2) + 1Tk,,1(k2 -k 2)
¥ 7Py klkyy + jeThy)(kyy + jTkyp)
- sin kya cos k(x — xg)
q(k) — 2]6 e ky2(k1 - kz) + ]Tky1(k2 _ k2)
X

¥y ky(kyy + je,Thky ) (kyy + jTky,)

- sin k a cos k(x — x5) (20)

where T = cot k,,zH. The range of integration is reduced to
(0 - o0) by using only the even parts of the integrands.

The improper integrals in (18) and (19) are evaluated by
breaking into two integrals with ranges (0 - ) and (¥ - ).
The first is evaluated by numerical integration using Simpson’s
rule. No poles in this region are encountered. The second is
- evaluated in closed form by 1) using large argument expressions
of the integrand, 2) expanding in a Taylor series, and 3) integrat-
ing term by term. The details of this procedure are as follows.

Equations (18) and (19) may be written as

u o0
E. = f (fL; + gl.;) dky + f (fLy + gl dky (1)
0 u

u o0
- f 4Ly + gl.,) diy + f (L + fI,) dky. (22)
] u

The variable « in (21) and (22) is selected such that

T =cotky,? =j for IK,%| = 10. (23)

The integrands of the second integrals in (21) and (22) are ex-
panded in a Taylor series in k, after substituting (23) into (20).
An expansion in k,, or k,, could also be used but is less con-
venient for this problem.

Next, write (21) and (22) as follows:

U
E, = f (fL; + gl,;) dk, + E,
o .
(large argument part of E,)
3
- f (fL; + gl,) dk, + E,
0

(large argument part of E,)
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[ le=me
u (E + F)X,

x I (sin QK, + sin Q' K,)

where

2
£ K
(F + ¢E)K,

+ JK,(cos Q'K, — cos QK,)
F + ¢FE

AJ‘ {jK,(cos Q'K, — cos QK,) I

Ix,.} dK, (24)

F + ¢FE id

K,
Ix.i
F + gE

+[ 1 -
(E + F) K,

x (sin QK, + sin Q’Kx)} dk, (25)

where

A= e"jkzz/ﬂ:yl, Q=(x— .X'o)ko + ako

E=VEZ+ K2 -1, Q = (x~ xo)ko — akg

F= \/Kx2 + Kz2 - & Kx = kx/kO’ Kz = z/kO'

E, F should not be confused with vectors E, F.
Rewrite (24) and (25) as follows:

E; = (I -~ K2IDL,; + jK]IVI,;
E, = jK]VL,; + (I — TIDI,,

I =f
u

I = J“”.sin QK, + sin Q'K
u (F + &E)K,

® K,(sin QK, + sin Q' K,) dK
X
u F + &F

IV = J‘“’ cos Q'K, — cos QK
u

F + ¢E
To carry out the integration in (27)~(30) the expansions for the
expressions 1/(E + F) and 1/(F + ¢E) are needed. For brevity,
only the integral in (27) will be considered here. The evaluation
of the integrals in (28)-(30) may be carried out in a similar
manner. Expand the expression 1/(E + F) in powers of K.

(26)
where

sin QK, + sin Q'K,
(E + F)X,

dk, 27

dK, (28)

I =

(29)

dK,. (30)

Q0

1 1 1
= C, . 31
E+ F £,.—1n;1 " K2 S
Substituting (31) into (27) we obtain
sin QK sin 0K
( K> L ") dK,. (32)
X

Using the appropriate integration formula [20] we obtain the
final result for I as follows [18]:

1 i C’ (_1)n+1 niz(_l)k(zk + l)'
a? — B* iS4 " (2n — D! |¥=6

cos x; | €OS x,
x2k+2 X2k +2

I =
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sin x,
x§k+ 1

sin xy

+
x%k+1

+ % iR
k=0

+ ci(xy) + Ci(xZ)} (Q2n—1 + Q/2n—1)

X1 Xy
where
¢i = the cosine integral
X, = uQ
x, = uQ’.
Finally,

u
Ex(“) = J‘ (szj + ngj) de
[}

+ KLV + (1 — I, (33)

('3
E4) = f (gL; + f1,)) dK,
0
+ A - KIDL; + jKILJIV. (34

Equations (33) and (34) are thus the final expressions for the
tangential electric fields at field point x; on the interface (Fig. 2)
due to a current-carrying subsection centered at source point x;.

B. Impedance Functions for Covered Microstrip

The impedance function for covered microstrip may be derived
by a procedure similar to that described in the previous sub-
section, except that it is necessary to choose ¥ functions which
satisfy the boundary conditions on tangential electric field at the
top cover (y = E) (see Fig. 3). The results are as follows:

E® = f P Ly + )Ly diy 35
0
E%) = J tk )Ly + (k) dk, (36)
1]
where
r(ky) = 2je™ "% k(ky, Ty + kyy T) sin kya sin ko (x — x)
* 7[}"1 (kyZTl + srkleZ)(kyl Tl + ky2T2)
stk = 277 ko Talki® = k2 + b Tolks® = k)
¥ nPy  ki(kyo Ty + ek T)ky Ty + kyo 7))
- sin kya cos ky(x — xo)
t(kx) = 2e—jkzz kyZTl(k12 - kzz) -+ klez(kZZ - kzz)

71'}71 kx(kyz Tl + erkyl TZ)(kyl Tl -+ ky2 TZ)

- sin kya cos ky(x — xq)

and where Ty = cot k,((E — H)and T, = cot k,,H. Note that
if the top cover is removed (let E - o0), (34) and (35) will be
reduced to (18) and (19). Equations (34) and (35) may be evaluated
in a manner similar to that previously described for (18) and (19).

IV. COMPUTATIONAL PROCEDURE FOR PROPAGATION CONSTANTS

Once the impedance functions are obtained, substitution in (8)
yields the desired eigenvalue equation. The procedure for the
solution of this equation is as follows.

For a particular choice of #, the number of subsections (see
Fig. 1) there are a finite number of K, for which the determinant
is zero. These roots are found by plotting the determinant versus
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Fig. 4. Effective dielectric constant for fundamental mode in microstrip.

K. There are extraneous roots which are improper values of K,
[16].

The extraneous roots are found by varying both frequency and
the number of subsections. The proper roots are not significantly
affected, whereas the extraneous roots are changed radically. This
combined criterion is found to be very effective in detecting
extraneous roots.

A computer program in Fortran IV was prepared to calculate
the eigenvalues of K, for the fundamental and higher order
modes in microstrip. The results for the dominant mode are
plotted in Fig. 4 (the ordinate is &, where ¢, = (/kz/ko)z). Note
the good agreement with experimental data. The maximum
deviation is 4 percent in &,, which corresponds to 2 percent in K.
Note also that the static (dispersionless) solution would be
represented by a horizontal line. Fig. 5 shows some results for
dominant and higher order modes as compared with theoretical
results by Van de Capelle and Lypaert [12] and Getsinger [14].
The maximum deviation is 4 percent in ¢, or 2 percent in K,.
The computation time for any one of the curves in Fig. 5 was
approximately 20 min using the Honeywell 635, This includes
the time necessary for generating extra data in order to select the
correct values of K.
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Fig. 5. Normalized propagation constant for fundamental and higher
order modes in open microstrip (@ Van de Capelle and Lypaert [12],
[] Getsinger [14]).

V. CONCLUSIONS

A continuous-spectrum method has been used in conjunction
with the method of moments to treat the time-harmonic solution
of covered and uncovered microstrips. Both longitudinal and
transverse currents were considered in the analysis. The propaga-
tion constants for fundamental and higher order modes in open
microstrip were calculated. In each case the results are in good
agreement with available theoretical and experimental data. The
results are accurate to within 4 percent.
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New

General Noise Analysis for Bias- and RF-Voltage-Dependent
Traunsferred-Electron Devices

J. T. PATTERSON, MEMBER, IEEE

Abstract—The general AM and FM noise spectrum analysis of Sweet
for transferred-electron devices is extended to include the variation of
device admittance with both bias- and RF-voltage amplitudes. This is
important because recent investigations by the author suggest that there
are significant variations of device admittance with both parameters.
Also the expressions for the AM and FM noise spectra are formulated
in terms of the more basic quantities such as stored charge, modulation
sensitivities, and incremental admittance.

INTRODUCTION

The lumped-circuit analysis of noise in self-excited oscillators
has received considerable attention. Edson [1], Mullen [2], and
van der Pol [3] wrote basic papers on this subject. As different
self-oscillating devices have been developed, their noise proper-
ties have been studied in detail. Lax [4] underscored this in-
dividuality of self-excited oscillators when he observed that ““the
noise mixes with the signal in a complex fashion that is quite
different from ordinary nonlinear systems. ... It is not satis-
factory to represent the spectrum as a delta function signal plus
a background. The noise will spread the delta function spectrum
into a finite width.” This complex mixing is dependent both on
the device properties and on the device environment. Hence,
it is necessary to combine an oscillator device model with an
RF-circuit model to completely study oscillator noise properties.
This short paper extends the theoretical groundwork for the
general noise analysis of transferred-electron (TE) devices.
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